On Frenet-Serret Invariants of Non-Null Curves in Lorentzian Space L5

نویسنده

  • José Luis López-Bonilla
چکیده

The aim of this paper is to determine Frenet-Serret invariants of non-null curves in Lorentzian 5-space. First, we define a vector product of four vectors, by this way, we present a method to calculate Frenet-Serret invariants of the non-null curves. Additionally, an algebraic example of presented method is illustrated. Keywords—Lorentzian 5-space; Frenet-Serret Invariants; Nonnull Curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Characterizations of Special Curves in the Euclidean Space E

In this work, first, we express some characterizations of helices and ccr curves in the Euclidean 4-space. Thereafter, relations among Frenet-Serret invariants of Bertrand curve of a helix are presented. Moreover, in the same space, some new characterizations of involute of a helix are presented.

متن کامل

Geometric Hamiltonian Structures on Flat Semisimple Homogeneous Manifolds

In this paper we describe Poisson structures defined on the space of Serret-Frenet equations of curves in a flat homogeneous space G/H where G is semisimple. These structures are defined via Poisson reduction from Poisson brackets on Lg∗, the space of Loops in g∗. We also give conditions on invariant geometric evolution of curves in G/H which guarantee that the evolution induced on the differen...

متن کامل

Characterisation of Frenet-Serret and Bishop motions with applications to needle steering

Frenet-Serret and Bishop rigid-body motions have many potential applications in robotics, graphics and computer aided design. In order to study these motions new characterisations in terms of their velocity twists are derived. This is extended to general motions based on any moving frame to a space curve. Further it is shown that any such general moving frame motion is the product of a Frenet-S...

متن کامل

On the differential geometry of curves in Minkowski space

We discuss some aspects of the differential geometry of curves in Minkowski space. We establish the Serret-Frenet equations in Minkowski space and use them to give a very simple proof of the fundamental theorem of curves in Minkowski space. We also state and prove two other theorems which represent Minkowskian versions of a very known theorem of the differential geometry of curves in tridimensi...

متن کامل

ar X iv : h ep - t h / 01 05 04 0 v 2 7 N ov 2 00 1 Frenet - Serret dynamics

We consider the motion of a particle described by an action that is a functional of the Frenet-Serret [FS] curvatures associated with the embedding of its worldline in Minkowski space. We develop a theory of deformations tailored to the FS frame. Both the Euler-Lagrange equations and the physical invariants of the motion associated with the Poincaré symmetry of Minkowski space, the mass and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012